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A solution is obtained for the problem of convective heat exchange in a plane- 
parallel channel with turbulent flow of the liquid and an arbitrary ratio of 
heat fluxes at the walls. 

According to Pai, the distribution of the velocity w and the coefficient of turbulent 
kinematic viscosity s t over the cross section of a cylindrical or plane-parallel channel 
(Fig. 1) is determined by the equations 

Y I ~ ( q ) ~ ~  : 1  n - - s  ~2 s - - 1  x12~ ' (1)  
~max / Z -  I r ~ -  I 

H e ( r l ) -  1 4- et - -  s ( n - - 1 )  ( 2 )  
v r~ - -  s q- n (s - -  1) q=n-2 

On the basis of an analysis of the data of [i], the values of n and s for a plane- 
parallel channel in the region of log Re e = 4-6 can be determined from the following func- 
tions (with a deviation of less than 1% from the data of [i]): 

s = 0,00275 Re~ 8 = 10--200,  
(3) 

n = 1,Ss. 

Using Eqs. (3), we obtain 

II~ (q) = I s ~q2 _ 2 (s - -  1) aq~ ' ( 4 )  
3s - -  2 3s - -  2 

3s - -  2 
H~(~) = (5)  

1 + 3 (s - -  1) ~3,-2 

L e t  u s  c o n s i d e r  t h e  c a s e  o f  h e a t  e x c h a n g e  i n  a p l a n e - p a r a l l e l  c h a n n e l  i n  t h e  s e c t i o n  o f  
h y d r o d y n a m i c a l l y  and  t h e r m a l l y  s t a b i l i z e d  t u r b u l e n t  f l o w  o f  a l i q u i d  a n d  w i t h  a n  a r b i t r a r y  
r a t i o  o f  s p e c i f i c  h e a t  f l u x e s  qx a n d  q 2 ,  c o n s t a n t  i n  v a l u e ,  s u p p l i e d  b y  t h e  l i q u i d  t o  t h e  
l o w e r  a n d  u p p e r  w a l l s  1 a n d  2 .  

We will take the physical properties of the liquid as independent of the temperature, 
the liquid is incompressible, and we neglect heat transfer along the channel axis and the 
energy of dissipation. In this case the energy equation has the form 

pc~w Ox Oy (• + %t ) = O. (6) 

For convective heat exchange with a fully developed temperature profile and a constant 
heat flux density at the walls the following equation [3] is valid: 

OT dT dY 
= - -  = c o n s t  ( 7 )  

Ox - ~  dx 
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Fig. i. Diagram of channel: a) profiles W/ 
Wma x and et/v according to Eqs. (4) and (5); 
b) the same according to Eqs. (18) and (19). 

From the thermal balance for an element of liquid [3], with allowance for (7), one can 
obtain 

- d T  ~ + q ~  

p%w dx -- h (8) 

We can write w as 

where 

wkw 

W m a  x W r lu3  

1 

W m a x  
0 

is a constant value for a given Re e. 

Let us consider the case of symmetrical heat removal (ql = q2) and the case with one 
adiabatic wall (q2 = 0), assigning to the values the subscripts s and a, respectively. We 

introduce the dimensionless temperature 

0 = �9 T - T w a ' l  (9) 

Since the Nusselt number is 

we can write the energy equation (6) 

NusII~01) + d 
risks .... 

where the coefficient n s = 4 and 

1I,, (11)=1  + at = - -  
a 

We will solve Eq. (I0)with the boundary conditions 

0 ' (0 )=0 ;  0 (1)=0 .  

N u  = 2hql 
1 (Y-- TwaO 

for the case of qt = qa in dimensionless Coordinates: 

a~ (lO) 

Pr ( P r t _  e t )  
Prt \ Pr + v " (11) 

(12) 

As a result of the solution constructed by the method presented in [i], we obtain the 

general expressions for Nu s and 0s: 

1 ~ !  " IIw (rl) d'q dr 1 
1 _ 1 [ dn, (13) 

Nus ns k-----~s o Ha (n) 
0 ~t 
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Fig. 2. Functions Nu = f(Ree, Pr) with 
Pr = 0.6 and Prt = 0.8: i, 2) from Eqs. 
(17) and (22); I, II, III) from Eqs. 
(15), (20), and (24), respectively. 

P r t  e t  + 
pr v 

= N~ ~ o d~. (14) 
~ks ~o (~) 

The analytical integration of Eqs. (13) and (14) 
is possible when Pr = Pr t. In this case ~(q) = 
~(~) .  

One can also obtain an approximate analytical 
solution with numbers Pr = 0.55-0.7, which are 
characteristic for gaseous media, and numbers 
Pr t = 0.9-1, which are usually adopted in heat- 
exchange calculations. 

With these values of Pr and Prt, assuming 
that st/v >> i over the entire channel cross sec- 
tion except for the region directly adjacent to 
the wall, one can assume in Eq. (ii) that 

- - ~ - . 1  + et =H~(~) .  
V 

As a result of integration, after transformations and slight approximating simplifica- 
tions (in operations with high powers) which do not reduce the accuracy, we obtain 

2 
Nus = n sk4sklPr  " (15 )  

k s P r  T ' 

Os = - kws- [k6s - -  (0,Srl 2 - -  k~sr # + kss,'as"l )J," ( 1 6 )  
ks 

T - -  Twa.1 = k6s - -  (0,5Ti 2 - -  k ,  ~4 + kssrlSS) ( 1 6 a )  
0s,ma x = T m a x _ _ T w a . 1  kgs ' 

where 

S �9 ~2 . 

k l = 3 s - - 2 ;  kz=-~- - ,  ks=l-- /~;  k4s=---12 ' 

k5 s -  2kz(2s 2 - 1 )  ," k e s - ~ 0 , 5 - - k 4 s + k s s "  
s (3s + 2) 

k w s =  8s ; k s =  kss__ 0,5-+- kesk ~ + 7k___As__ 
3 ( 3 s +  1) 3 5 

kss + k3k6s k~k4s + k~kss k4sk 3 + k~kss-~- 0,Sk~ . 

3s + 1 7 6s + I 3s + 5 3s + 3 

With Pr = 0.6 and Pr t = 0.8 the calculated data are well approximated by an equation 
which is standard for gases (Fig. 2): 

Nus = O.022Re~ 8pr~ ( 1 7 )  

In the case of q2 = 0 the energy equation, the boundary conditions, and the solution have 
the same form as Eqs. (I0), (12)-(14). It is only necessary to replace the coordinate q by 
~, the subscript "s" by "a," and take n a = 2. The direct use of the Pal profile here is not 
possible, however, since it was required to calculate (_~)k, where k can be any value, even 
fractional. 

The form of the w and s t profiles has the strongest effect in the zone of intense heat 
exchange, i.e., near the lower wall. The nature of the profile near the upper adiabatic 
wall does not play an important role. Let us take the form of the w and s t profiles such 
that they coincide with the Pal profiles in the region of the lower wall, placing the origin 
O' of the coordinates at the upper wall (Fig. i). Then the values of w and s t will be maxi- 
mal at the point 0': 

3 s - - 2  3 s - - 2  

i 0 0 1  
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Fig. 3. Dimensionless 
temperature profiles: 
i) adiabatic wall; 2) 
symmetrical heat re- 
moval (dashed curve: 
Re e = i0 a, s = 4; solid 
curve: Re e = i05, s = 
26). 

= 3s - -  2 

1 q- 3 (s - -  1) ~e~-~ ( 1 9 )  

We can test the correctness of this method further by obtaining 
thesolution with symmetrical heas removal from the solution for 
an adiabatic wall by the method of superposition [2, 3], 

With the use of (18) and (19) the solution for an adiabatic 
wall takes the form 

2 
NU a = na/~ak~Pr ; ( 2 0 )  

k a P ~  

where 

�9 5.6s 

6 s +  I 

0 a ~ k w a  

ka 

Oa,max ~--- 

n a = 2; kwa ---- - -  

ksa = 0,5 - -k4 , ,  + ksa; 

�9 -~ . - . .  

ksa k3ksa  

6s - -  1 6 s -  1 

[kea -- (0,5~ ~ -- k~a~ + ksa~S)l; 

k6a --(0,5~ 2 2-- k4a~ 6 -~- kSa~ 6s) 

k0a 

(21) 

(22) 

; k 4 a - -  S . ' ksa= ( S - - 1 ) ( T S - - 5 )  . 

30k, 5skl : 

1 k~k~a 16k4a " 

ka= s 5 " -- 

k~k4~ + k~ks~ + O,5k, ksk4~ + k3ks~ 

11 6s + 3 6s q- 7 12s 1 

With Pr ffi 0.6 and Pr t = 0.8 the approximation of the results of the calculation (Fig. 2) 
gives 

Nu 1 = Nua 
1 - -  (q~/~)O* ~ ( 2 3 )  

When Pr = Pr t the approximate equations (15), (16) and (20), (21) become exact. 

From Eq. (20) for the case of q2 = 0 one can obtain an expression for Nu with arbitrary 
values of ql and q2 by using an equation obtained in [2] by the method of superposition: 

0 " =  ! 2 a - T  =0a(0  ) -  1, (24) 
T -- Twa.1 

in which 

0 a(0) - -  kwakea ( 2 5 )  
ka 

According to the results of the calculation the value e* equals 0.204, 0.194, and 0.189 when 
Re e = 104 , 105 , and 106 , respectively. 

In the particular case when q2 = ql we obtain from (20) and (24) an approximate expres- 

sion for NUs: 

Nu a 
Nus ~ 1 - - 0 "  ( 2 6 )  

A comparison of the results of the calculation by the exact equation (15) and the ap- 
proximate equation (26) is shown in Fig. 2, from which it is seen that the agreement of the 
results is good, which confirms the correctness of the modification of the w and s t profiles 
performed above. 

To complete the analysis the dimensionless temperature profiles 

0m ~ = T - - T w a . 1  __ 0 

r m =  - rwa.1  o 
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for the cases of ql = q2 and q2 = 0 are shown in Fig. 3. As seen from Figs. 2and 3, in 
the channel with an adiabatic wall the temperature profile is found to be less full and the 
Nusselt number is 25% lower than in the case of symmetrical heat removal. 

NOTATION 

T, Twa , temperatures of liquid and wall; n = yl/0.5hl, ~ = y2/h, dimensionless coordin- 
ates; ~, 0, h, a, Cp, kinematic viscosity, density, thermal conductivity, and thermal dif- 
fusivity of liquid and its heat capacity at constant pressure; a t , %t = atPcp, coefficients 
of turbulent heat transfer and of turbulent thermal conductivity; Pr = ~/a, Prt = et/at, 
Prandtl number and turbulent Prandtl number; Re e = wde/~, Reynolds number; d e = 2h, equiv- 
alent diameter of channel; n, s, coefficients in Pal's equations, dependent on Re. Indices: 
max, i, and 2 denote the largest value in the cross section and values pertaining to the 
lower and upper walls; a bar above avalue denotes its average over the cross section. 
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